Effect of Nabiximols Cannabinoid Oromucosal Spray on Spasticity and Muscle Strength in Persons With Multiple Sclerosis Across 3 Randomized Controlled Trials

Francois Bethoux¹ | Kathryn Nichol² | Joanne Wagner² | Joris Berwaerts² Dan Checketts³ | Karen Cartwright³

¹The Mellen Center for Multiple Sclerosis Treatment and Research, The Cleveland Clinic Foundation, Cleveland, OH, USA; ²Greenwich Biosciences, Inc., Carlsbad, CA, USA; ³GW Research Ltd, Cambridge, UK

Poster # 30190

SUMMARY

- All 3 trials showed statistically significant improvement in spasticity Numeric Rating Scale (NRS) score with nabiximols vs placebo
- The improvement in spasticity with nabiximols was not accompanied by an increase in muscle weakness, often observed with antispasticity medications, or by a change in preferred walking speed
- There was no meaningful correlation between change in spasticity NRS score and change in Motricity Index (MI), and weak to negligible correlation between change in spasticity NRS score and change in preferred walking speed

INTRODUCTION

- Medications that reduce spasticity may also reduce muscle strength, potentially impairing the ability to walk.
- Using data from 3 randomized controlled trials (RCTs; GWMS0106, GWSP0604, and SAVANT)¹⁻³ of nabiximols vs placebo, the relationship was assessed between measures of spasticity and muscle strength in lower extremities, or walking speed.
- Outcomes assessed:
- Spasticity: mean spasticity NRS score
- Muscle strength: MI for legs

EDSS, Expanded Disability Status Scale; MS, multiple sclerosis

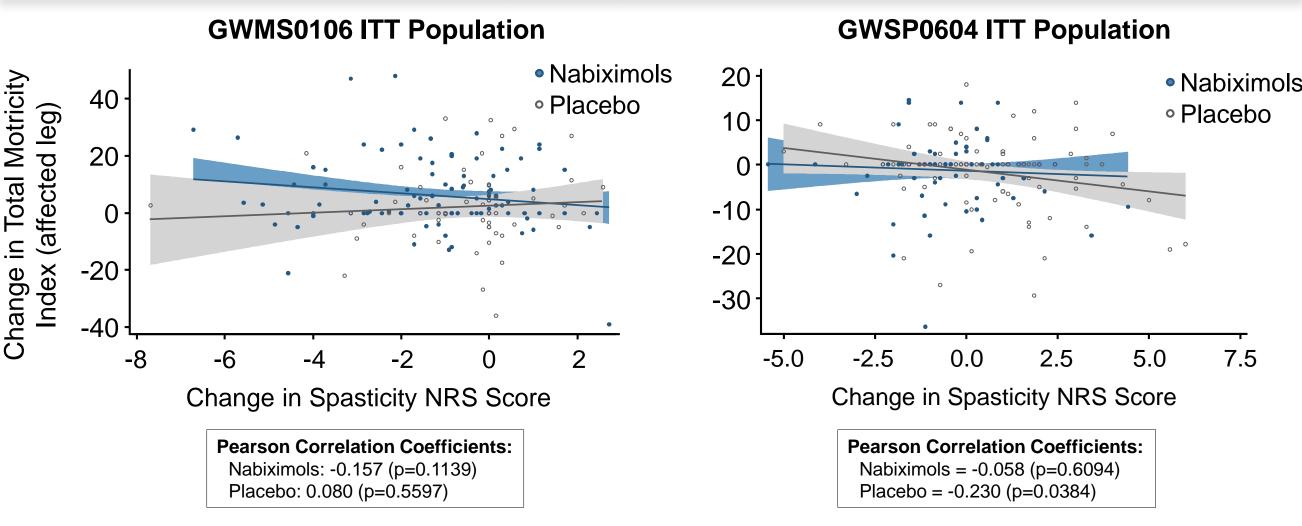
- Walking speed: Timed 10-Meter Walk (T10MW) test
- The correlation between spasticity and strength or walking speed during the double-blind (DB) phase of each of the 3 trials

Baseline Characteristics (Double-blind Phase)

	GWMS0106		GWSP0604		SAVANT	
	Placebo	Nabiximols	Placebo	Nabiximols	Placebo	Nabiximols
Mean age, years	47.8	49.7	48.1	49.1	50.1	52.0
Mean duration of MS, years	12.2	13.6	11.8	13.3	14.3	13.2
Mean duration of spasticity, years			6.7	8.6	8.3	7.6
Disease severity, mean EDSS score			5.9	6.0	5.9	5.7
Mean spasticity NRS score	5.4	5.5	7.1	7.0	6.9	6.9
Mean leg MI (median)	51.5 (51.0)	53.1 (54.0)	64.4 (67.0)	63.6 (67.0)		
Mean T10MW, seconds			25.3	24.5	21.1	20.8

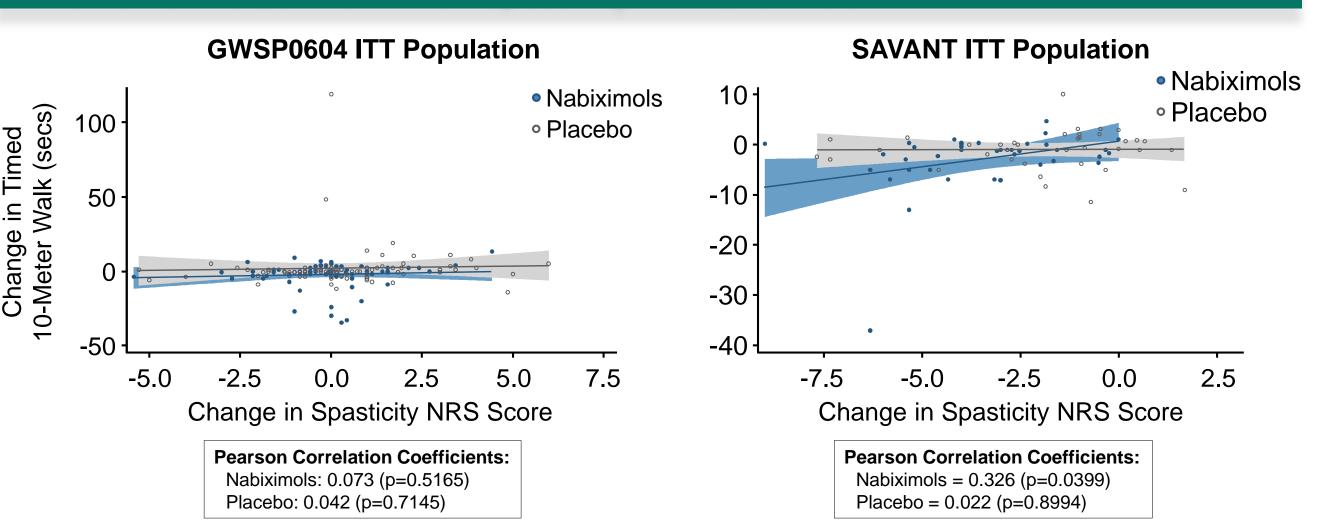
Biosciences, Inc. All rights reserved. Contact information: medinfo@greenwichbiosciences.com Clinical Trial ID: NCT00711646, NCT00681538, EudraCT2015-004451-40.

Changes in Spasticity, Muscle Strength, and Mobility (DB Phase)


			Treatment			
Trial	Placebo	Nabiximols	difference*	p value		
Change in Mean Spasticity NRS Score						
GWMS0106	-0.63	-1.18	-0.52	0.048		
GWSP0604	0.64	-0.19	-0.83	0.0002		
SAVANT	-1.6	-3.5	-1.9	<0.0001		
Change in Adjuste	d Mean MI for Legs					
GWMS0106	1.85	5.71	3.86	0.054		
GWSP0604	-4.21	-3.24	0.97	0.439		
Change in Mean T10MW (seconds)						
GWSP0604	3.22	-0.13	-3.34	0.069		
SAVANT	-1.08	-2.79	-1.71	0.11		

^{*}Treatment difference favors nabiximols when it is negative for NRS and T10MW, and when it is positive for MI; all treatment differences favored nabiximols.

MI was not assessed in SAVANT.


T10MW was not assessed in GWMS0106.

Pearson Correlation Between Spasticity NRS and MI

Total possible score for MI is 100. ITT, intent-to-treat.

Pearson Correlation Between Spasticity NRS and T10MW

Mean T10MW speed at baseline was 25 seconds for GWSP0604 and 21 seconds for SAVANT

Correlations Between Changes in Spasticity NRS and Changes in Other Outcomes

Outcome	Trial*	Statistic	Nabiximols	Placebo	
		n	102	55	
	GWMS0106	Correlation (95% CI)	-0.157 (-0.341 to +0.039)	0.080 (-0.189 to +0.338)	
Change in MI (legs)		p value	0.1139	0.5597	
		n	79	81	
	GWSP0604	Correlation (95% CI)	-0.058 (-0.276 to +0.138)	-0.230 (-0.427 to -0.012)	
		p value	0.6094	0.0384	
		n	82	80	
	GWSP0604	Correlation (95% CI)	0.073 (-0.146 to +0.285)	0.042 (-0.179 to +0.259)	
0		p value	0.5165	0.7145	
Change in T10MW		n	40	37	
	SAVANT	Correlation (95% CI)	0.326 (+0.016 to +0.579)	0.022 (-0.304 to +0.344)	
		p value	0.0399	0.8994	

*Correlations only apply to data from the double-blind phase of trials CI. confidence interval.

 Data suggest there is no meaningful correlation between change in spasticity NRS score and change in lower extremity muscle strength, and weak to negligible correlation between change in spasticity NRS score and change in preferred walking speed.

METHODS

		GWSP0604		SA	VANT
	GWMS0106	Phase A	Phase B	Phase A	Phase B
PwMS, n	184	572	241	191	106
Trial design	Placebo-controlled	Single-blind	Placebo-controlled	Single-blind	Placebo-controlled
Follow-up time	6 weeks	4 weeks	12 weeks	4 weeks (+ wash-out)	12 weeks
Outcomes	Spasticity NRS and MI	Spasticity NRS	Spasticity NRS, MI, and T10MW	Spasticity NRS	Spasticity NRS and T10MW

- All 3 trials enrolled persons with multiple sclerosis (PwMS) and spasticity inadequately managed by current medications.
- GWSP0604 and SAVANT used an enriched trial design: PwMS were treated with single-blind standard of care (SOC) + nabiximols in Phase A, and those reporting at least a 20% improvement in spasticity NRS score were randomized in Phase B to either SOC + nabiximols or SOC + placebo.

Disclosures: First presented at American Academy of Neurology Annual Meeting, 2020. This study was sponsored by Greenwich Biosciences, Inc. Medical writing and editorial assistance was provided to the authors by Jeanelle Spencer, PhD, and Dena McWain of Ashfield Healthcare Communications, and funded by Greenwich Biosciences, Inc. All authors met the ICMJE authorship criteria and had full access to relevant data. Neither honoraria nor payments were made for authorship. FB has consulted for, conducted studies funded by, or received honoraria for services provided to GW Pharmaceuticals companies; KN, JW, and JB are employees of Greenwich Biosciences, Inc., and DC and KC are employees of GW Research Ltd. Nabiximols is a complex botanical mixture containing delta-9-tetrahydrocannabinol, cannabidiol, and other cannabinoid and non-cannabinoid components. Nabiximols is not approved for any indication in the U.S. Nabiximols (Sativex®) is approved for symptom improvement in patients with moderate to severe spasticity due to multiple sclerosis who have not responded adequately to other antispasticity medications in >25 countries outside of the U.S.; additional marketing approval in Israel includes use as adjunctive treatment for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as adjunctive analgesic treatment in adults with advanced cancer. **References: 1.** Collin C et al. *Eur J Neurol.* 2001;18:1122-1131; **3.** Markova J et al. *Int J Neurosci.* 2019;129:119-128. ©2020 Greenwich

